ISO TC 211 Geographic information/Geomatics

# ISO/TC 211 Geolexica

## Concept “convex hull”

Term ID

86

source

ISO 19107:2019, 3.15

eng

### convex hull

smallest convex set containing a given geometric object

Note to entry: "Smallest" is the set theoretic smallest, not an indication of a measurement. The definition can be rewritten as "the intersection of all convex sets that contain the geometric object". Another definition in a Euclidean space bbb"E"^n is the union of all lines with both end points in the given geometric object. C = A."convexHull" <=> [C."convex" = "TRUE"] ^^ [A sub C] ^^ [[B."convex" = "true", A sub B] => [A sube C sube B]]

ORIGIN: ISO/TC 211 Glossary of Terms - English (last updated: 2020-06-02)

ara

### هيكل محدَّب

أصغر مجموعة محدَّبة تحتوي على جسم هندسي محدَّد

ملاحظة: Provisional translation: 19107:2019, 3.15 -- Note 1 to entry $$'ملاحظة: يقصد ب "أصغر" المستوى الأصغر المحدد أو المضبوط نظرياً , وليس في ذلك دلالة على إجراء أي نوع من القياس. ويمكن إعادة صياغة التعريف على النحو التالي: "تقاطع جميع المجموعات المحدَّبة التي تحتوي الكيان الهندسي".$$ "Smallest" is the set theoretic smallest, not an indication of a measurement. The definition can be rewritten as "the intersection of all convex sets that contain the geometric object". Another definition in a Euclidean space bbb"E"^n is the union of all lines with both end points in the given geometric object. C = A."convexHull" <=> [C."convex" = "TRUE"] ^^ [A sub C] ^^ [[B."convex" = "true", A sub B] => [A sube C sube B]]

ORIGIN: المهندس/ محمد بن سعد دلبوح (last updated: 2020-06-02)

dan

### konvekst hylster

mindste konvekse mængde, der kan indeholde et givet geometrisk objekt

ORIGIN: ISO/TC 211 Glossary of Terms - dansk (last updated: 2020-06-02)

deu

### konvexe Hülle

Definition not provided in this language.

NOTE: This note has not been translated.

ORIGIN: ISO/TC 211 Glossary of Terms - german (last updated: 2020-06-02)

fin

### konveksi verho

pienin konveksi joukko, joka sisältää annetun geometrisen objektin

HUOM.: Provisional translation: 19107:2019, 3.15 -- Note 1 to entry $$'HUOM. Määritelmän sana "pienin" viittaa teoreettisesti pienimpään joukkoon, ei mittaustulokseen. Määritelmä voidaan ilmaista myös "kaikkien tietyn geometrisen objektin sisältävien konveksien joukkojen leikkaus".$$ "Smallest" is the set theoretic smallest, not an indication of a measurement. The definition can be rewritten as "the intersection of all convex sets that contain the geometric object". Another definition in a Euclidean space bbb"E"^n is the union of all lines with both end points in the given geometric object. C = A."convexHull" <=> [C."convex" = "TRUE"] ^^ [A sub C] ^^ [[B."convex" = "true", A sub B] => [A sube C sube B]]

ORIGIN: ISO/TC 211 Monikielinen termistö - Suomi (last updated: 2020-06-02)

fra

### enveloppe convexe

plus petit ensemble convexe contenant un objet géométrique donné

ORIGIN: Glossaire en français des termes de l'ISO/TC 211 (last updated: 2020-06-02)

kor

### 볼록 외곽

기하 객체를 포함하는 최소의 볼록 집합

비고: Provisional translation: 19107:2019, 3.15 -- Note 1 to entry '$$'비고: "최소"는 이론상 가장 작은 것으로, 이는 측정 결과를 말하는 것은 아니다. 볼록 외곽은 "기하 객체를 포함하는 모든 볼록 집합의 교차점"으로 재정의될 수 있다.$$ "Smallest" is the set theoretic smallest, not an indication of a measurement. The definition can be rewritten as "the intersection of all convex sets that contain the geometric object". Another definition in a Euclidean space bbb"E"^n is the union of all lines with both end points in the given geometric object. C = A."convexHull" <=> [C."convex" = "TRUE"] ^^ [A sub C] ^^ [[B."convex" = "true", A sub B] => [A sube C sube B]]

ORIGIN: ISO/TC211 지리정보 - 용어 표준 (last updated: 2020-06-02)

rus

### выпуклая оболочка

наименьшее из выпуклых множеств, содержащее данный геометрический объект

Примечание: Provisional translation: 19107:2019, 3.15 -- Note 1 to entry $$'«Наименьшее» означает наименьшее в теоретическом понимании и не является единицей измерения. Данное определение можно сформулировать таким образом: «пересечение всех выпуклых множеств, которые содержат геометрический объект»$$ "Smallest" is the set theoretic smallest, not an indication of a measurement. The definition can be rewritten as "the intersection of all convex sets that contain the geometric object". Another definition in a Euclidean space bbb"E"^n is the union of all lines with both end points in the given geometric object. C = A."convexHull" <=> [C."convex" = "TRUE"] ^^ [A sub C] ^^ [[B."convex" = "true", A sub B] => [A sube C sube B]]

ORIGIN: Словарь терминов ISO/TC 211 - Российская Федерация (last updated: 2020-06-02)

spa

### cierre convexo

conjunto convexo más pequeño que contiene un objeto geométrico dado

Nota: Provisional translation: 19107:2019, 3.15 -- Note 1 to entry $$'NOTA "más pequeño" es el conjunto teóricamente menor, no es una indicación de medida. La definición puede reescribirse como "la intersección de todos los conjuntos convexos que contienen al objeto geométrico"$$ "Smallest" is the set theoretic smallest, not an indication of a measurement. The definition can be rewritten as "the intersection of all convex sets that contain the geometric object". Another definition in a Euclidean space bbb"E"^n is the union of all lines with both end points in the given geometric object. C = A."convexHull" <=> [C."convex" = "TRUE"] ^^ [A sub C] ^^ [[B."convex" = "true", A sub B] => [A sube C sube B]]

ORIGIN: Glosario de terminos de ISO/TC211 (last updated: 2020-06-02)

swe

### konvext hölje

den minsta konvexa mängden som innehåller ett givet geometriskt objekt

ORIGIN: ISO/TC 211:s flerspråkiga ordlista - svenska (last updated: 2020-06-02)

zho

### 凸包

ORIGIN: Geomatics Glossary of Terms in Chinese (last updated: 2020-06-02)

JSON

/api/concepts/86.json

SKOS in JSON-LD

/api/concepts/86.jsonld

SKOS in RDF

/api/concepts/86.ttl

info

• status: valid
• classification: preferred
• date accepted: 2003-05-01

Review

last review performed:
(2019-12-02)
status:
final
decision:
accepted
decision event:
Publication of ISO 19107:2019(E)
notes:
Authoritative reference changed from Dictionary of Computing, Fourth Edition, Oxford University Press to ISO 19107:2019, 3.15 . Lineage source added as ISO 19107:2003(E)